Какую термопрокладку выбрать для ноутбука?

Какую термопрокладку выбрать для ноутбука? — О компьютерах просто

Какую термопрокладку выбрать для ноутбука?

Всем привет!
Думаю, бесспорным будет утверждение, что термопасты Arctic MX-2 и MX-4 самые лучшие. Остальные производители подобных продуктов, в лучшем случае, повторят результат теплопроводности либо будут отставать.

За хорошее качество нужно платить и часто приходится искать компромисс между ценой и производительностью. Поэтому и существует большое разнообразие производителей термоинтерфейсов. Надеюсь, что места на рынке хватает всем.

Давным-давно я сделал для себя выбор в сторону термопасты Laird T-grease 980. Она и дешевле и почти повторяет результаты Arctic MX-2. Не забываем, что при частом применении термопасты (особенно для ремонтных мастерских) цена имеет значение.

Зато по другой причине я пользуюсь терморезинкой Laird TFlex 740, она лучшая среди всех, хотя и дороже. В нынешнем финансовом кризисе актуальным является поиск недорогих, но качественных материалов.Важные замечания.Терморезинка по теплопроводности всегда хуже термопасты.

Там,где использовалась термопаста, ее нельзя заменить термопрокладкой, даже самой тонкой. И наоборот, нельзя заменить терморезинку термопастой.

Совсем недавно я обнаружил в магазине DNS в продаже Термопрокладка Thermal Pad от Arctic.

Зная, какие хорошие у них термопасты, я естественно ожидаю того же результата от их терморезинок. Сайт производителя здесь.

Для сравнения результатов тестирования будут использованы 3 терморезинки: Arctic Thermal Pad (ACTPD00002A), Gelid TP-GP01-B, Laird TFlex 740.

Внешний вид и упаковка

Arctic Thermal Pad поставляется в прозрачном пакетике. На нем наклейка с характеристиками продукта. Терморезинка светло-голубого цвета, толщина 1мм. На ощупь суховатая, мягкая, похожа на пластилин. Легко скатывается в шарик и не распрямляется.

Структура термопрокладки однородная, без вкраплений, без марлевой «арматуры» и если присмотреться, то видна пористая структура материала. С обоих сторон прокладка защищена прозрачной пленкой.
Gelid TP-GP01-B поставляется в картонной упаковке. На ней указаны характеристики продукта. Терморезинка серого цвета, толщина 1мм.

На ощупь термопрокладка похожа на пластилин. В шарик скатывается легко и не распрямляется. Структура однородная, без вкраплений и без марлевой решетки. В упаковке прокладка защищена с одной стороны прозрачной пленкой, с другой стороны голубой пленкой..

Laird TFlex поставляется только большими пластами в OEM упаковке, без указания каких-либо характеристик.

Терморезинка серого цвета, толщина 1мм. На ощупь термопрокладка похожа на пластилин. По всем ощущениям она похожа на Gelid TP-GP01. Так же легко скатывается в шарик и не распрямляется. Структура однородная, без вкраплений и без марлевой «арматуры».

— Теплопроводность (W/mK): 6— Размер: 50×50мм— Толщина: 1мм— Твёрдость по Шору: 25

— Цвет: голубой.

— Рабочая температура: -40~200 ℃

— Теплопроводность (W/mK): 12— Размер: 80 x 40мм— Толщина: 1мм— Твёрдость по Шору: 35

— Цвет: серый

— Теплопроводность (W/mK): 5— Размер: 100 x 100мм— Толщина: 1мм— Твёрдость по Шору: 50— Цвет: серый

— Рабочая температура: -40~200 ℃При выборе терморезинки всегда стоит обращать внимание на теплопроводность. Этот показатель определяет на сколько хорошо материал проводит тепло и чем выше показатель- тем лучше. Для сравнения трех терморезинок я вывел заводские характеристики в диаграмму. Gelid- бесспорный лидер в теплопроводности, но мне почему-то кажется, что это не правда.Я хочу сравнить другой параметр, который определяет выбор в покупке товара- это цена.

К сожалению, все испытуемые мною терморезинки не возможно купить в одном месте, поэтому сравнение будет очень неточным, но все-таки буду исходить из данной ситуации. Как правило, для установки прокладки на кристалл вырезается квадратик 1см*1см, поэтому постараюсь высчитать стоимость этого квадратика. Формула простая: стоимость в магазине разделить на площадь (длина*ширина) = стоимость 1см*1см.

Laird TFlex 1500/(10*10)=15Arctic Thermal Pad 750/(5*5)=30Gelid GP-EXTREME THERMAL PAD 750/(8*4)=23

А теперь тестирование

Для тестирования я выбрал старенькую, простенькую видеокарту от Palit Geforce GT240. карта обладает небольшим тепловыделением, но она еще не успела обзавестись новомодными энергосберегающими режимами. На мой взгляд, этот вариант максимально подходит для тестового инструмента.

Тестирование будет проводится программой Furmark. В «зачет» пойдут максимальные результаты показания программы после 10 минут работы. Все показания будут занесены на диаграмму. Для сравнения будет зафиксирована температура работы видеокарты в Furmark на родной (заводской) термопасте.

Я доволен результатом. Все терморезинки показали примерно равный результат. А самое главное: справились со своей работой и в итоге видеокарта не выключилась от перегрева. Сразу первый вывод созрел: Gelid GP-EXTREME THERMAL PAD накрутили себе ватты, она не тянет на заявленные цифры.

То, что Gelid не хуже всей тестируемой троицы — это хороший результат. Arctic Thermal Pad показал хороший результат по отведению тепла на радиатор. Можно сказать, фирма держит высокую планку качества во всех своих продуктах.

Меня немного расстроил Laird TFlex, но там и меньше заявленная теплопроводность, зато можно сказать: «лаирдовские 5вт почти как артиковские 6вт.»

Еще одно тестирование

Тестовым стендом у меня выступит материнская плата от ноутбука DELL Inspiron N5110. Этот ноутбук хорош тем, что он есть у меня в наличии и у него присутствует дискретная видеокарта на чипе nVidia Geforce N12.

Недостатком этого стенда является то, что термотрубка является общей для видеокарты и процессора, поэтому я принял решение устанавливать термопрокладки и на кристалл видеокарты и на кристалл процессора. Тестовые программы будут Furmark для видеокарты и AIDA 64 для процессора. Программы будут запущены одновременно.

Энергосберегающие режимы по возможности отключены. Температурные показания будут фиксироваться под нагрузкой, результаты будут выведены на диаграмму.

В ноутбуке DELL Inspiron N5110 термопрокладки есть только на чипах памяти видеокарты, поэтому в результаты тестирования будут внесены температурные показания работы ноутбука с термопастой Arctic Cooling MX-2.Учитывая показания предыдущего тестирования, эти результаты можно считать закономерными.

Все тестируемые термопрокладки обладают хорошими способностями к проведению тепла, а одинаковый результат получился из-за невозможности отключить все энергосберегающие функции в ноутбуке. Главный результат — все три испытуемых прошли тест достойно и справились со своей задачей, ноутбук ни разу не выключился от перегрева.

Заключение

Хочу отметить хорошее качество термопрокладки Arctic Thermal Pad. Много лет назад я искал качественные терморезинки для замены их в ноутбуке при чистки от грязи. За долгий период времени, я перепробовал огромную кучу китайского «дерьма» в надежде найти то самое, что не уступит по качеству «заводским» прокладкам.

Если пошариться в интернете, то будет много вопросов где найти качественные термопрокладки, т.к. он будет полн дешевых термоинтерфейсов с псевдо-большими показателями. Я же в итоге для себя нашел- это Laird TFlex 740. Да, недешево, но зато она очень эффективно работает в ноутбуках и видеокартах.

И наконец-то появилась возможность приобрести термопрокладку в розничных магазинах DNS, которые присутствуют во всех городах Приморского края и России. Теперь нет проблемы, где ее купить.На тестах, проведенные мною, Arctic Thermal Pad показала себя с лучшей сторон. Терморезинка справляется со своей задачей отлично.

Производитель честно указал теплопроводность, в отличии от Gelid со своими 12 вт. Термопрокладки размером 5см*5см хватит примерно на 10 ноутбуков или на одну мощную десктопную видеокарту. Для тех, кто занимается ремонтом, нужно рассмотреть большой объем пластинки Thermal Pad.Arctic выпускает самую лучшую термопасту и не менее замечательные термопрокладки.

Читайте также  Как проверить систему охлаждения ноутбука?

Цель этой статьи:»пощупать» и сравнить с другими термопрокладку Arctic Thermal Pad. Кто-то будет утверждать, что медные пластины лучше или «бутерброд» из фольги дешевле, но речь в этой статье шла не об этом. Зато у вас есть возможность написать и расписать полезность меди или алюминия в охлаждении компьютерного железа.

Источник: https://ruspchelper.com/kakuyu-termoprokladku-vybrat-dlya-noutbuka/

Интернет журнал о выборе лучших товаров и услуг

Какую термопрокладку выбрать для ноутбука?

04.08.2019 16:22:30

Эксперт: Михаил Зак

Из-за особенностей конструкции ноутбуки очень часто страдают от перегрева. Все комплектующие расположены близко друг к другу, а воздух внутри корпуса практически не циркулирует – и именно поэтому температура «железа» повышается практически экспоненциально. Перегрев, в свою очередь, приводит не только к снижению производительности из-за эффекта троттлинга, но и к сокращению эксплуатационного периода компьютера и появлению риска выхода некоторых деталей из строя.

Поэтому очень важно правильно организовать систему охлаждения в устройстве. А её качество зависит не только от скорости работы вентиляторов и чистоты радиаторов, но и теплопроводности «соединительных элементов» — термопасты и термопрокладки.

В этом материале мы разберёмся, что лучше для ноутбука – термопаста или термопрокладка – а также дадим несколько советов по организации системы охлаждения.

Термопаста

Одно из важнейших условий правильной работы системы охлаждения – нагревающиеся элементы должны быть расположены максимально близко к трубкам тепловода или контактной пластине радиатора. Но при этом требуется, чтобы они контактировали через специальную прокладку, которая и проводит жар.

Так, если приложить контактную пластину радиатора к крышке процессора, между этими двумя элементами останется воздух. А он, в свою очередь – отличный теплоизолятор. Воздух не будет пропускать жар от процессора к радиатору, и чип практически мгновенно перегреется.

Для предотвращения этого используется термопаста. Эта эмульсия на основе силикона или другого жидкого материала с вкраплениями металлического порошка либо микрокристаллов. Жидкий компонент термопасты необходим для того, чтобы заполнить пространство между крышкой процессора. А металл – чтобы проводить высокую температуру от чипа к радиатору.

При правильном нанесении толщина слоя термопасты близка к нулю. Её задача, как было сказано выше – вытолкнуть воздух из пространства между процессором и радиатором, при этом обеспечив передачу высокой температуры. И, как бы это ни было парадоксально, чем больше термопасты наносится – тем хуже теплообмен. Всё-таки это «смазка», а не сливочное масло на бутерброде.

Очень важно отметить, что термопаста бывает разной. Различается состав, консистенция и – главное – теплопроводность. Последнее – самый важный показатель. Чем выше теплопроводность – тем лучше термопаста справляется со своей задачей. Так, «смазка» с теплопроводностью выше 10 Вт/мК способна снизить температуру процессора на 5-10 градусов в сравнении со стоковой или пастой со значением этого показателе менее 5 Вт/мК.

Для ноутбуков стоит брать термопасту как минимум 8 Вт/мК. Дело в том, что радиаторы мобильных компьютеров сами по себе не слишком производительны – они маленькие, неудачно расположенные и легко забиваются пылью. Поэтому очень важно, чтобы все остальные элементы термоинтерфейса были качественными.

Конечно, цена такой «пасты» может быть сравнительно высока. Не стоит рассчитывать, что она будет дешевле 10-15 долларов. Однако экономия на охлаждении ноутбука может вылиться в проблемы с его дальнейшей работой.

Итак, подведём итоги.

  • Прекрасно справляется с задачей отвода тепла – особенно модели с высоким значением теплопроводности;
  • Богатый ассортимент – можно найти термоинтерфейс по любой желаемой цене и с любым желаемым показателем теплопроводности.
  • Сравнительно высокая цена на действительно качественные материалы.

В целом термопаста – это классическое решение для охлаждения техники. Но стоит помнить, что сама по себе она температуру не снижает. Это просто проводник жара, и конкретные показатели зависят от других элементов системы охлаждения – кулера, тепловодов, радиатора и даже корпуса ноутбука.

Термопрокладка

Как было сказано выше, для эффективного охлаждения толщина слоя термопасты должна быть минимальной. В идеале – 0,1-0,3 мм. Но что делать, если сам охлаждаемый чип имеет небольшую высоту, и контактная пластина радиатора до него просто не дотягивается?

В этом случае на помощь приходят термопрокладки. Это – такой же термоинтерфейс из силикона и металлической пыли, только выполненный в форме листа и имеющий большую толщину (в некоторых случаях – до 1-2 мм). Именно он позволяет «связать» чип и контактную пластину радиатора, выступая проводником высоких температур.

Из-за своей большой толщины термопрокладки менее эффективны, чем термопаста, но всё равно эффективнее воздуха. Как следствие, они применяются для охлаждения низкопроизводительных чипов. Например, «слабых» дискретных видеокарт или чипсетов материнской платы. А вот для процессоров их лучше не использовать. Если производитель применяет термопрокладки для отвода тепла от «главного чипа», это говорит в первую очередь о непроработанности системы охлаждения и низком качестве сборки самого ноутбука.

Стоит оговориться, что некоторые производители вроде Gelid или Cooler Master выпускают термопрокладки с высокой теплопроводностью – от 10 Вт/мК. Однако даже они с их технологиями жидкого металла и керамической пыли не могут побороть законы физики. Такие высокопроизводительные термопрокладки имеют малую толщину – обычно 0,5 мм.

Также у термопрокладок есть один очень важный недостаток. Дешёвые модели могут выполняться на термически неустойчивой силиконовой либо подобной основе. И под воздействием высоких температур она может протечь, тем самым резко снизив свою эффективность.

При выборе термопрокладки для ноутбука действует то же правило, что и для термопасты: чем выше теплопроводность – тем лучше. Но важно учесть и место размещения этого термоинтерфейса. Например, в большинстве случаев эффективное охлаждение чипсета не обязательно (кроме тех ситуаций, когда ноутбук постоянно «гоняет» «туда-сюда» огромные массивы данных – например, на нём «крутится» база 1С). Так что и выбирать какие-нибудь термопрокладки на 10 Вт/мК не обязательно – хватит и решения на 5-8 Вт/мК.

  • Простота в размещении. Не нужно размазывать по чипу равномерным тонким слоем, достаточно отрезать прямоугольник нужного размера и приклеить на место;
  • Разнообразие моделей. Есть как тонкие термопрокладки, так и сравнительно толстые – от 0,5 до 5 мм.
  • Высокая цена. Даже наименее эффективные модели отличаются сравнительной дороговизной;
  • Сравнительно низкая эффективность;
  • Есть риск протечки.

В целом термопрокладки – это скорее вынужденная мера. Они используются в двух целях:

  1. Если зазор между контактной пластиной радиатора и поверхностью охлаждаемого чипа слишком велик для размещения слоя термопасты (от 0,3 мм);

  2. Если чип был скальпирован и требуется сгладить его неровности.

Скальпирование чипа иногда используется для повышения производительности компьютера – при разгоне процессора или видеокарты. Но стоит учесть, что тогда он становится уязвим к воздействию извне. Охлаждать скальпированный чип нужно только термопрокладками, которые с высокой вероятностью не протекут за годы использования.

Что лучше для ноутбука – термопаста или термопрокладка

Конечно же, лучше качественная термопаста с высокой теплопроводностью. Но если зазор между чипом и контактной пластиной радиатора слишком велик, то рекомендуется воспользоваться термопрокладкой.

Сравним эти два термоинтерфейса.

Характеристика Термопаста Термопрокладка
Особенности нанесения Требуется размещать тонким слоем (0,1-0,3 мм) по ровной и гладкой поверхности Достаточно вырезать прямоугольник и приклеить на чип. Допускается размещение на неровной и шершавой поверхности (после скальпирования, например)
Максимальная теплопроводность на момент написания данного материала (по данным интернет-магазина ДНС) 73 Вт/мК 12 Вт/мК
Риски Может пересохнуть, может протечь Может протечь
Читайте также  Как сделать снимок с камеры ноутбука?

Таким образом, по удобству использования побеждает термопрокладка. Но для лучшей реализации охлаждения рекомендуется использовать кулер.

А вообще есть простое правило. Если производитель использовал термопрокладку – то лучше ставить её. Если термопасту – то её.

Как организовать охлаждение на ноутбуке

Чтобы избежать перегрева, рекомендуется следовать нескольким простым советам по организации охлаждения:

  1. Используйте термоинтерфейсы с высокой теплопроводностью. Рекомендуемое значение – от 6 Вт/мК, на процессорах и видеокартах – от 10 Вт/мК;

  2. Плотно прижимайте контактные подошвы трубок-тепловодов к охлаждаемым чипам. Чем сильнее – тем лучше;

  3. Опасайтесь запыления радиаторов. Не менее 1 раза в полгода (или 2 раз, если в доме есть животные) снимайте кулер и аккуратно продувайте решётку пневмоочистителем;

  4. Старайтесь держать ноутбуки на ровным твёрдых поверхностях. Избегайте размещения их на ткани или коленях;

  5. Если пространство вокруг клавиатуры выполнено из металла – избегайте размещения на нём наклеек или иного «мусора». Эта алюминиевая панель также используется для охлаждения системы;

  6. Если ноутбук продолжает перегреваться – например, вследствие продолжительной эксплуатации при превышенных нагрузках – то лучше и вовсе приобрести охлаждающую подставку с активными кулерами.

Источник: https://expertology.ru/sravnivaem-termopastu-i-termoprokladku-chto-luchshe/

Выбор термопрокладки для ноутбука

Какую термопрокладку выбрать для ноутбука?

Ноутбук иногда перестаёт работать: у него падает мощность, он периодически выключается или сильно шумит. Это происходит, когда перегреваются внутренние детали электроники. Последствия могут быть непредсказуемы, вплоть до невозможности ремонта. За техникой необходимо следить, чтобы не возникали такие проблемы. Особенно если компьютер дорогой и в нём хранится полезная информация. Для этого и существуют охлаждающие системы.

Подбор термопрокладки для ноутбука.

Система охлаждения — самая частая причина визита в ремонтную мастерскую. В лучшем случае вентиляция ноутбука может быть забита пылью, а в худшем — износился термоинтерфейс.

Какой бывает термоинтерфейс?

Термоинтерфейс — теплопроводящий состав между охлаждаемой плоскостью и теплоотводным устройством. Самым распространёнными являются термопасты и компаунды, они эксплуатируются для персональных компьютеров и ноутбуков. А также они предназначены и для микросхем различной электроники.

Термоинтерфейсы различают по видам:

  • термопасты;
  • полимерные составы;
  • клеи;
  • термопрокладки;
  • пайка жидкими металлами.

Термопаста — мягкое вещество с высокой теплопроводностью. Она применяется для уменьшения теплосопротивления между двумя соприкасающимися гранями. Служит в электронике в качестве термоинтерфейса между деталью и устройством, отводящим от неё тепло (например, между процессором и радиатором). При применении теплопроводящей пасты необходимо учитывать, что её нужно наносить тонким слоем.

Руководствуясь инструкцией изготовителя и нанеся небольшое количество пасты, можно заметить, что она раздавливается при прижатии поверхностей друг к другу. При этом она заполняет все углубления и неровности на материалах и равномерно распространяется по всей детали. Полимерные составы служат для улучшения герметичности и прочности электронных соединений. Представляют собой смолы, которые затвердевают после их залития на теплоотдающую поверхность.

Клеи используют когда невозможно прикрутить теплоотвоводящий материал к процессору, чипсету и т. д. Его редко применяют из-за точности соблюдения технологии нанесения на плоскость. Если их нарушить, то это может привести к поломке. Последнее время набирает популярность спайка жидким металлом. Такой способ даёт рекорды по удельной теплоотводности. Однако имеет большое количество сложностей, таких как подготовка материала к пайке, а также материалы спаиваемых деталей. Ведь алюминий, медь и керамика непригодны для этого.

Что такое термопрокладка?

На сегодняшний день самым популярным термоинтерфейсом являются термопаста и термопрокладка. Термопрокладка — небольшая пластинка, которая размещается между нагревающимся элементом ноутбука (например, чипсет, память, южный мост, видеокарта) и радиатором (охлаждающим элементом).

Многие используют для этого термопасту. Но она не может давать такое же решение, как прокладка. Всё дело в том, что с большим объёмом работы паста не справится. Паста не может полностью залить ровно всю поверхность. Всегда останется небольшой зазор, что плохо для системы охлаждения. Теплопроводящая прокладка обладает высокими теплопроводимыми свойствами, она эластична и прекрасно заполняет зазоры промеж поверхностей.

Они бывают разных размеров в зависимости от размеров микросхем. Главное, это правильно подобрать толщину. Бывают от 0,5 до 5 мм и больше. Большинство специалистов рекомендуют выбирать 1 мм. Но лучше всего при разборке устройства самому измерить свою старую изоляцию. Категорически запрещается использовать её повторно. Это приведёт к поломке детали.

Подложка охлаждает детали, которые работают в режиме высокой температуры. Если она испортится, нужная деталь не будет достаточно охлаждаться, что приведёт к перегреву системы. Как только компьютер начинает медленно работать или выключается, необходимо сразу его разобрать и почистить вентиляторы и вместе с тем поменять термоизоляцию.

Если этого не сделать, то температура увеличится до 100 и больше градусов по Цельсию. Микросхемы начнут медленно плавиться, и на этом их функция закончится. Благодаря эластичности, теплоотводящая прокладка защитит микросхемы от температурных и механических деформаций. Поэтому, чтобы увеличить срок службы ноутбука, открывать заднюю крышку и осматривать внутреннее состояние необходимо регулярно.

Элементы теплопередачи бывают из разных материалов:

  • керамические;
  • слюдяные;
  • силиконовые;
  • медные.

Керамическая

Теплопроводящие керамические подложки — на сегодняшний день являются лучшими для отвода тепла от электронных микросхем к радиатору охлаждения. Самые эффективные из них изготовлены из нитрида алюминия (AlN).

ВНИМАНИЕ. Нитрид алюминия — керамика прекрасной микроструктурной и химической однородности, обладающая отличными характеристиками. Та термоизоляция, которая изготовлена из нитрида алюминия, становится чудесной альтернативой оксиду бериллия. Следует отметить, что они нетоксичны. 

Какие выгоды от использования подложек из нитрида алюминия?

  • Первым делом, это их высокая устойчивость к температуре и химическим воздействиям.
  • Прокладки максимально уменьшают рабочие температуры полупроводников.
  • Теплопроводность нитрида алюминия не уменьшается при нагреве, что, в отличие от бериллия, увеличивают их срок эксплуатации.

ВАЖНО. Чем размеры схем меньше, тем больше рассеивается мощность. 

Существует мнение, что керамику из нитрида алюминия легко сломать. Но это не так. Подложка самой меньшей толщины способна выдержать небольшой прижим. Она немного сгибается, что позволяет принять форму радиатора.

Высокая теплопроводность обеспечивает возможность использовать изоляцию увеличенной толщины без ухудшения теплового сопротивления. Этим достигается уменьшение ненужного зазора между схемой и радиатором. Например, теплоотводная прослойка из нитрида алюминия толщиной 1 мм уменьшает зазор по сравнению со слюдой в 20 раз, но проигрывает по сопротивлению в 10 раз.

Электрическая прочность термопрокладок из нитрида алюминия гарантируется на уровне не менее 16 кВ/мм, что почти в два раза превышает этот показатель у силиконовых подложек.

Силиконовая

Устойчивая к высоким температурам и также применяется для охлаждения элементов ноутбука. Наиболее часто её применяют для отвода тепла от процессора, графического чипа, видеопамяти, оперативной памяти, северного и южного мостов.

Силикон нужен тогда, когда контакта двух плоскостей нет или когда нет гарантии, что он будет. Тогда его задачей становится заполнить просвет и передать тепло от горячей к холодной поверхности эффективнее, чем термопаста. Эта прокладка эластична, может сжиматься и разжиматься в зависимости от толщины просвета.

Силикон легче подобрать по толщине. В основном они продаются большими по размерам листами. Если поставить один размер, а зазор ещё остаётся, то можно отрезать и поставить ещё одну. Поэтому необязательно измерять расстояние между двумя поверхностями до того, как поставить изоляцию.

Подложка сжимается лучше, чем остальные. Поэтому при ударе или вибрации они смягчают компоненты. Ещё один плюс силикона в том, что для установки подложек использование герметика необязательно. Минусом силиконовых прокладок есть их недолгий срок службы. Это следует также учитывать при покупке более дорогих изделий.

Медная

В последнее время всё большую популярность приобретает этот материал. Они используются для теплоотвода графических и центральных процессоров. Теплопроводность медных подложек значительно выше, чем у силиконовых. Но при их использовании необходим герметик, чтобы скрыть просвет между поверхностями микросхем и радиатора.

Необходимо точно знать толщину при выборе медных подложек с учётом использования термопасты. Они не такие эластичные, как силиконовые, и зазор между поверхностями нужно измерить. При воздействии радиатора герметик слегка выдавливается, но это неопасно и под действием времени он удаляется. Применение медной термоизоляции более трудоёмко, однако более эффективно.

Читайте также  Как разобрать адаптер питания ноутбука?

Тест термопрокладок

Для теста, как материал, был выбран силикон, также учитывалось множество других показателей. При проверке теплопроводности лучше всех себя показывали изделия Bergquist, сделанные в США, с заявленным показателем 6 Вт/(м·К).

Почти тот же результат показали российские прокладки Coolian и CoolerA с теми же параметрами. Единственный минус — это цена, они довольно дорогие. Швейцарские Arctic Cooling с заявленной теплопроводностью 6 Вт/(м·К), российские Coolian с 3 Вт/(м·К) и китайские Aochuan с 3 Вт/(м·К) показывают примерно один результат по степени термоизоляции.,

И наконец, разработки с теплопроводностью 1,0–1,5 Вт/(м·К). Такой вид охлаждения подойдёт компьютерам не перегревающимся, использующим малое количество ресурсов. В этой категории все изделия показали себя одинаково. Все имели приблизительно одинаковые свойства, и все выполнили заявленные требования.

Термопрокладки можно выбрать любые, в зависимости от того, какие параметры вам подходят. Замену термоизоляции лучше доверить профессионалам, чтобы не повредить нежные микросхемы ноутбука.

Источник: https://nastroyvse.ru/devices/laptop/kakuyu-termoprokladku-vybrat-dlya-noutbuka.html

Тест термопрокладок Laird TFlex 740, Arctic Thermal Pad, Gelid GP-EXTREME THERMAL PAD | Обзоры | Клуб DNS

Какую термопрокладку выбрать для ноутбука?

: 4 года назад

Всем привет!

Думаю, бесспорным будет утверждение, что термопасты Arctic MX-2 и MX-4 самые лучшие. Остальные производители подобных продуктов, в лучшем случае, повторят результат теплопроводности либо будут отставать. За хорошее качество нужно платить и часто приходится искать компромисс между ценой и производительностью. Поэтому и существует большое разнообразие производителей термоинтерфейсов. Надеюсь, что места на рынке хватает всем.

Давным-давно я сделал для себя выбор в сторону термопасты Laird T-grease 980. Она и дешевле и почти повторяет результаты Arctic MX-2. Не забываем, что при частом применении термопасты (особенно для ремонтных мастерских) цена имеет значение. Зато по другой причине я пользуюсь терморезинкой Laird TFlex 740, она лучшая среди всех, хотя и дороже. В нынешнем финансовом кризисе актуальным является поиск недорогих, но качественных материалов.

Важные замечания.

Терморезинка по теплопроводности всегда хуже термопасты. Там,где использовалась термопаста, ее нельзя заменить термопрокладкой, даже самой тонкой. И наоборот, нельзя заменить терморезинку термопастой.

Совсем недавно я обнаружил в магазине DNS в продаже Термопрокладка Thermal Pad от Arctic. Зная, какие хорошие у них термопасты, я естественно ожидаю того же результата от их терморезинок. Сайт производителя здесь.

Для сравнения результатов тестирования будут использованы 3 терморезинки: Arctic Thermal Pad (ACTPD00002A), Gelid TP-GP01-B, Laird TFlex 740.

Gelid TP-GP01-B

Gelid TP-GP01-B поставляется в картонной упаковке. На ней указаны характеристики продукта. Терморезинка серого цвета, толщина 1мм.

На ощупь термопрокладка похожа на пластилин. В шарик скатывается легко и не распрямляется. Структура однородная, без вкраплений и без марлевой решетки. В упаковке прокладка защищена с одной стороны прозрачной пленкой, с другой стороны голубой пленкой.

Laird TFlex 740

.

Laird TFlex поставляется только большими пластами в OEM упаковке, без указания каких-либо характеристик. Терморезинка серого цвета, толщина 1мм. На ощупь термопрокладка похожа на пластилин. По всем ощущениям она похожа на Gelid TP-GP01. Так же легко скатывается в шарик и не распрямляется. Структура однородная, без вкраплений и без марлевой «арматуры».

Технические характеристики, заявленные производителем.

— Теплопроводность (W/mK): 6

— Размер: 50×50мм

— Толщина: 1мм

— Твёрдость по Шору: 25

— Цвет: голубой.

— Рабочая температура: -40~200 ℃

Gelid GP-EXTREME THERMAL PAD (TP-GP01-B)

— Теплопроводность (W/mK): 12

— Размер: 80 x 40мм

— Толщина: 1мм

— Твёрдость по Шору: 35

— Цвет: серый

Правильное охлаждение: какая термопаста лучше для ноутбука

Какую термопрокладку выбрать для ноутбука?

Термопаста в шприце

Начать стоит с теории. При изготовлении процессоров добиться идеально гладкой формы изделия невозможно. В любом случае остаются микрошероховатости. Это же касается и радиаторов кулеров.

В результате примыкание между двумя их плоскостями становится неидеальным, и теплопроводность снижается. Что же делает термопаста? Она сглаживает эти неровности и гарантирует большую площадь примыкания между двумя плоскостями.

А так как сама паста способна проводить тепло, то это увеличивает теплопроводность и снижает риск перегрева процессора.

Процессор Intel

Вообще, стоит немного отступить и рассказать об устройстве процессоров. То, что мы привыкли называть процессором — металлическая коробочка с ножками и надписями Intel или AMD, всего лишь корпус. Сам кристалл занимает примерно треть всего объёма.

Вся остальная металлическая часть — теплорассеиватель. Но тепло расходится по нему неравномерно. То есть, наиболее нагреваемая часть большинства процессоров — центр. Это так называемый «хотспот». Именно эту часть жизненно важно правильно обработать.

Далее в статье мы разберёмся, как это делать и какую термопасту выбрать для процессора.

Вообще, термопрокладка для ноутбука или ПК — это по большей части вынужденная мера. Потому что её применение характерно для больших зазоров между плоскостями элементов. Например, когда требуется создать хорошую теплопроводность между чипами разной высоты, охлаждаемых одним радиатором или кулером. Применение же термопрокладок в процессорах имеет место, однако не распространено.

Термопрокладки на чипах

Любая термопаста определяется несколькими характеристиками. Наиболее важными считаются теплопроводность и вязкость. Остальные параметры, так или иначе, зависят от цены и менее важны.

Теплопроводность

Говоря простым языком — это количество тепла, которое способно пройти через материал. Характеризуется этот показатель коэффициентом теплопроводности. Чем он выше, тем лучше термопаста отдаёт тепло от процессора к радиатору кулера.

Слой, вероятно, немного толстоват

Вязкость

В основном вязкость характеризует удобство нанесения. Слишком жидкая термопаста может растечься по краям и залить материнскую плату, а слишком вязкая не сможет лечь ровным слоем по всей поверхности. Измеряется вязкость в Па·с. Какого-либо рекомендуемого значения нет. Просто при покупке стоит учитывать, что пасту с низкой вязкостью будет достаточно капнуть на середину корпуса процессора и просто придавить защёлками, а с высокой вязкостью придётся размазать вручную наименее тонким слоем.

«Страшный сон» мастера

Интервал температур

От постоянной работы в агрессивной среде термопаста со временем теряет свои свойства. Она засыхает, и теплопроводность снижается. Интервал температур показывает максимальный диапазон, при котором термопаста будет «работать». Чем выше значение, тем дольше она сможет удерживать своё изначальное состояние.

Состав пасты

Состав нормальной, заводские термопасты содержат компоненты, необходимые для сохранения свойств. Иногда в их состав входит немного примесей и металлов для улучшения. Но на рынке существуют и подделки, состав которых, возможно, неизвестен даже производителям. С учётом того, что паста находится под постоянным нагревом и источает разнообразные пары, то такой вид может навредить здоровью. Это не говоря уже о свойствах теплопроводности, которые могут закончиться через короткое время.

Рубрика «Как не надо делать»

Самым главным параметром для выбора является теплопроводность. Именно она показывает, способна ли выбранная паста справиться с теплоотдачей вашего процессора. Если вы не собираетесь разгонять свой ноутбук, то не стоит и переплачивать за более теплопроводные варианты.

Не менее важна и цена. Слишком низкая стоимость должна вызвать подозрение в том, не подделка ли этот продукт. Если бюджет позволяет, то стоит обратить внимание на изделия среднего или более высокого ценового диапазона. Как уже говорилось чуть выше, вязкость в наибольшей степени определяет тип нанесения. Не хотите размазывать пасту вручную — выбирайте более жидкую.

ВНИМАНИЕ! (нажмите, чтобы узнать)

По какой-то причине не все производители указывают вязкость своего продукта на упаковке. Поэтому перед походом в магазин неплохо было бы ознакомиться с ассортиментом разных производителей в интернете, а также со спецификациями на их продукцию.

Источник: https://tehno.guru/termopasta-luchshe-dlya-noutbuka/